
Synthese (2016) 193:2805–2814
DOI 10.1007/s11229-015-0887-x

Against relative overlap measures of coherence

Jakob Koscholke1 · Michael Schippers1

Received: 10 April 2015 / Accepted: 31 August 2015 / Published online: 15 September 2015
© Springer Science+Business Media Dordrecht 2015

Abstract Coherence is the property of propositions hanging or fitting together. Intu-
itively, adding a proposition to a set of propositions should be compatible with either
increasing or decreasing the set’s degree of coherence. In this paper we show that
probabilistic coherence measures based on relative overlap are in conflict with this
intuitive verdict. More precisely, we prove that (i) according to the naive overlap mea-
sure it is impossible to increase a set’s degree of coherence by adding propositions
and that (ii) according to the refined overlap measure no set’s degree of coherence
exceeds the degree of coherence of its maximally coherent subset. We also show that
this result carries over to all other subset-sensitive refinements of the naive overlap
measure. As both results stand in sharp contrast to elementary coherence intuitions,
we conclude that extant relative overlap measures of coherence are inadequate.

Keywords Bayesian coherentism · Probabilistic coherence measures ·
Relative overlap

1 Introduction

The concept of coherence plays the key role in any coherentist theory of epistemic
justification or truth. Therefore, it is of vital importance for the tenability of such
theories to render precise this concept. Striving for mathematical precision in their
analyses of coherence, several authors have proposed so-calledprobabilistic coherence
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measures. These measures typically presuppose the following formal framework: let
L be a propositional language, i.e. a set of formulae closed under some functionally
complete selection of classical connectives, e.g. {¬,∧} and let P : L → [0, 1] be a
probability function over L , i.e. a non-negative, real-valued function where P(x) = 1
if x ∈ L is a tautology and P(x1 ∨ x2) = P(x1) + P(x2) if x1, x2 ∈ L are logically
incompatible. Furthermore, let 2L≥2 denote the set of all subsets of L with at least two
propositions1 andP be the set of all regular probability functions over L , i.e. probability
functions where P(x) = 1 if and only if x ∈ L is a tautology and P(x) = 0 if and only
if x is a contradiction (cf. Shimony 1955). Then, a probabilistic measure of coherence
is a (partial) functionC : 2L≥2 × P → R assigning each pair (X, P) a real number that

is supposed to represent X ’s degree of coherence under P . Notice that, as usual in
this context, we omit reference to the particular probability function as a separate
function argument unless it is needed. Prominent proposals for probabilistic coherence
measures can be pigeonholed into the following classes: deviation from independence
measures (cf. Shogenji 1999; Schupbach 2011), relative overlap measures (cf. Glass
2002; Olsson 2002; Meijs 2006) and mutual support measures (cf. Fitelson 2003;
Douven and Meijs 2007; Roche 2013; Schippers 2014a).2

In this paper we will focus on relative overlap measures of coherence as it can
easily be seen that other probabilistic coherence measures are not affected by the
points made in this paper. To be more specific, we will put forward two arguments
against extant overlap measures that highlight the intuition that it should be possible to
increase a set’s degree of coherence by adding propositions. In Sect. 2 it is shown that
this intuition is violated by the naive overlap measure of coherence. Section 3 then
proceeds with a discussion of the refined overlap measure that is often considered
an improvement of its naive counterpart. First of all, we show that this is true with
respect to the former property of the naive measure, which is not shared by its refined
counterpart. Nonetheless, we also show that the fact that the refined measure is, in a
nutshell, only a weighted average of values of its naive counterpart, also compromises
its performance in related contexts. More precisely, it can be shown that according to
the refined overlap measure each set is at most as coherent as its maximally coherent
subset (and usually lower). We argue that this is inadequate and therefore conclude
that no extant overlap measure captures the concept of coherence. Finally, we show
that this result does not depend on the fact that the refined overlap measure is based
on the straight average of values of the naive overlap measure but carries over to all
other subset-sensitive refinements of the naive measure.

1 This restriction has been called “Rescher’s principle” (Olsson 2005, p. 17) and basically amounts to the
fact that coherence is a property that propositions cannot have in isolation but only in groups of at least two
propositions (cf. Rescher 1973, p. 32). For exceptions to Rescher’s principle in discussions on probabilistic
coherence measures see Akiba’s (2000) and Fitelson’s (2003) discussions on self-coherence.
2 Probabilistic measures of coherence have been discussed critically by Bovens and Hartmann (2003),
Moretti and Akiba (2007), Olsson (2005), Olsson and Schubert (2007), Siebel (2005) and Siebel and Wolff
(2008). For an overview of the measures and their structural properties see Schippers (2014a, b, 2015), for
an overview of their performance in a collection of test cases see Koscholke (2015). The relative overlap
measure has received special attention in the literature due to its high degree of truth-conduciveness as shown
by Angere (2007, 2008) and its strong performance in inferences to the best explanation as presented by
Glass (2012).
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2 The naive overlap measure

In two independent articles Glass (2002) and Olsson (2002) have proposed the fol-
lowing mathematical function as a probabilistic measure of the degree of coherence
of some set X under a probability distribution P:

O(X) =
P

( ∧
xi∈X

xi

)

P

( ∨
xi∈X

xi

)

The numerator of the measure is the probability that all propositions in X are true
together while the denominator is the probability that at least one proposition in X
is true. Set-theoretically speaking the numerator can be understood as the absolute
overlap of X ’s propositions whereas the denominator can be understood as the total
surface of X ’s propositions. The basic idea of this measure is therefore often referred
to as measuring coherence in terms of relative set-theoretic overlap. For reasons that
will become clear later wewill refer toGlass andOlsson’smeasure as the naive overlap
measure. The measure’s codomain is [0, 1] so the measure takes its minimum value
only if there is no absolute overlap but a non-empty total surface and its maximum
only if the absolute overlap and the total surface are identical. Particularly, themeasure
assigns a minimum degree of coherence to inconsistent propositions as long as the
denominator is not 0 and a maximum degree of coherence to logically equivalent
propositions. It is also worth noticing that the Glass–Olsson measure is undefined if
the probability of at least one proposition in a given set being true is equal to zero.

Though at first sight it might seem appealing as a probabilistic measure of coher-
ence, Bovens and Hartmann (2003) have formulated a test case in which the measure
yields counter-intuitive results. Suppose that we are provided with information from
independent and equally reliable sources that someone’s pet Tweety is a bird (x1)
and that Tweety is a ground-dweller (x2). Later, we also receive the information that
Tweety is a penguin (x3). Bovens andHartmann assume the following joint probability
distributions over the set {x1, x2, x3} (Fig. 1).
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Fig. 1 Probability distribution
for the Tweety case
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Table 1 Results in the Tweety
case

Tweety sets O O ′

{x1, x2} 0.010 0.010

{x1, x2, x3} 0.010 0.015

Intuitively, so Bovens and Hartmann argue, the extended set {x1, x2, x3} is more
coherent than the reduced set {x1, x2} since given our background knowledge about
penguins the information that Tweety is a penguin entails that it is a bird and that it is
a ground-dweller and therefore x3 relieves the tension between the two propositions
x1 and x2. Nevertheless, the naive measure violates this intuition. It can easily be seen
in Table 1 that both sets are assigned identical degrees of coherence (cf. Bovens and
Hartmann 2003, p. 50).

Now, this result is well-documented in the philosophical literature. However, what
has gone unnoticed is that this test case only exemplifies a general problem for the
naive overlap measure which is far more devastating. In its most general form, this
problem amounts to the following observation:

Theorem 1 For any P over L and X ∈ 2L≥2: if X
′ ⊂ X, then O(X ′) ≥ O(X).

Thus, according to the naive overlap measure each subset of a given set of propositions
is at least as coherent as the given set itself. To see this more clearly, recall that a joint
probability function P over a set of propositions X = {x1, . . . , xn} which might
exhaust the underlying language L can be represented as follows:

x1 x2 . . . xn−1 xn P
. . . p1
. . . p2
. . . p3

...
...

...
...

...
...

. . . p2n−2

. . . p2n−1

. . .

0 0 0 0
0 0 0 1
0 0 1 0

1 1 0 1
1 1 1 0
1 1 1 1 p2n
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In this representation, p1 is the probability that all xi ∈ X are false together whereas
p2n is the probability that all xi ∈ X are true together. The naive overlap measure can
then be reformulated the following way:

O(X) = p2n∑2n
i=2 pi

Similarly, let X ′ = {x1, . . . , xm} for m ≤ n, then we get analogously:

O(X ′) =
∑2n

i=2n−(2n−m−1) pi∑2n
j=2n−m+1 p j

Given that p2n is at most as high as O’s numerator for X ′ and that
∑2n

i=2 pi is at least
as high asO’s denominator for X ′, we immediately get the result thatO(X) ≤ O(X ′),
with equality holding if and only if p2n−1 = · · · = p2n−(2n−m−1) = 0 and p2n−m =
· · · = p21 = 0. Otherwise, X is less coherent according to O .

This general result aggravates the former test case finding in the followingway: even
if one were inclined to judge the particular result in the test case as an artifact of the
chosen probability distribution or a negligible exception for a measure that otherwise
performs well, Theorem 1 can be considered a definite knock-down argument for the
naive overlap measure of coherence. A coherence measure based on relative overlap
seems to be of little or no epistemological value if it does not allow for the degree
of coherence of a set of propositions to increase if a proposition is added. However,
there seems to be a loophole out of this awkward position: perhaps this result is solely
due to the way the naive overlap measure is generalized to the case of n propositions.
Accordingly, the following section dwells upon the refined counterpart of O which
has been proposed by Meijs (2006).

3 The refined overlap measure

The refined overlap measure is based on the insight that the degree of coherence of a
given set of propositions is sensitive to the coherence of its subsets. Therefore, when
measuring coherence according to the refined overlapmeasure,O is not only applied to
the given set of propositions, but also to all of its subset with at least two propositions.
For a concise representation of the measure let 2X≥2 denote the set of all subsets of X

with at least twomembers andwith cardinality |2X≥2| = (2n − n) − 1. Then the refined
overlap measure can be characterized as follows:

O ′(X) =
∑

X ′∈2X≥2
O(X ′)

(2n − n) − 1

One of the success stories that gave reason to preferO ′ overO is that it masters Bovens
and Hartmann’s Tweety case, i.e. the extended set {x1, x2, x3} is judgedmore coherent
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than the reduced set {x1, x2} (cf. Meijs 2006, p. 245) as can be seen in Table 1.3 This
already entails that O ′ does not fall prey to the above knock-down argument against
the naive overlap measure O .

However, there is an argument against O ′ that is associated with the fact that O ′ is
only an average ofO-values and therefore inherits some of its problems. Especially, the
property mentioned in Theorem 1, viz. that according toO it is impossible to increase
a set’s coherence by adding propositions, gives rise to a related problem for Meijs’
measureO ′. To illustrate the problem, consider BonJour’s well-known raven example
(cf. BonJour 1985, p. 96): suppose again that we are provided with information from
independent and equally reliable sources that all ravens are black (x1), that someone’s
pet Henry is a raven (x2) and that Henry is black (x3). The assumption that the set
{x1, x2, x3} should be assigned a significant degree of coherence can be motivated as
follows: “[. . .] the component propositions, rather thanbeing irrelevant to eachother, fit
together or reinforce each other in a significant way; from an epistemic standpoint, any
two of themwould lend a degree of positive support to the third” (BonJour 1985, p. 96).
Moreover, it seems obvious that all proper subsets of {x1, x2, x3} containing at least
two propositions are intuitively less coherent than the set itself. It is the information that
all ravens are black that really ties all propositions together. This intuition is almost
reversed when we apply the refined overlap measure to the following probability
distribution over {x1, x2, x3} that has been given by Bovens and Hartmann (2003) in
their discussion of BonJour’s raven case (Fig. 2).

The degrees of coherence of {x1, x2, x3} and its two-membered subsets are given
in Table 2.

Obviously, both overlap measures disagree considerably with the intuitive verdict
since both assign a higher degree of coherence to at least some subsets of {x1, x2, x3}.
In the light of Theorem 1, this should come as no surprise for the naive overlapmeasure
O . But this property of O also affects its refined counterpart. The following theorem
shows that the particular results in the raven case exemplify a general problem forO ′.
For some set X let o1, . . . , om denote the coherence values for each of the subsets
X ′
1, . . . , X

′
m as assigned byO ′ where om denotes the coherence value of the target and

thus the largest set. Then the following relationship holds:

Theorem 2 For any P over L and X ∈ 2L≥2: O
′(X) ≤ max({o1, . . . , om−1}).

In other words, according to O ′, any set X is at most as coherent as its maxi-
mally coherent subset. To prove this observation note that O ′(X ′) ≥ O ′(X ′′) for each

3 Nonetheless, it is worth noticing that O ′ has some flaws in the Tweety case. What if we had not received
the information about Tweety being a penguin, i.e. x3, but rather ¬x3, i.e. the information that Tweety
is not a penguin? This proposition does not establish any inferential connections to x1 or x2. Instead, it
Footnote 3 Continued
seems even to decrease coherence because given ¬x3, one possible explanation for why x1 and x2 might
be the case, our last resort of making sense of x1 and x2 in some sense, vanishes. Hence, the extended
set {x1, x2,¬x3} should be less coherent than {x1, x2}. Quite surprisingly, the Glass–Olsson naive overlap
measure satisfies this intuition since O({x1, x2,¬x3}) = 0. Meijs’ refined measure does not because
O ′({x1, x2,¬x3}) = 0.247. However, one should be careful with this modified case since it involves a
negated proposition. Negations are known to be difficult to handle in intuitive judgements (cf. Deutsch et al.
2009).
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Fig. 2 Probability distribution
for the raven case
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Table 2 Results in the raven
case

Raven sets O O ′

{x1, x2} 0.14 0.14

{x1, x3} 0.26 0.26

{x2, x3} 0.18 0.18

{x1, x2, x3} 0.11 0.17

X ′ ⊂ X ′′ ⊂ X . This is due to the fact that the averaging procedure for O ′(X ′) takes
into account the coherence values of all subsets of 2X≥2 that are also accounted for by

O ′(X ′′) and additionally some coherence values for subsets of X of higher cardinality.
In the light of Theorem 1, these latter coherence values, however, cannot exceed the
former. Accordingly, O ′(X ′′) cannot exceed O ′(X ′). This immediately entails that no
subset X ′ can be assigned a higher O ′-coherence than any of the members of 2X=2, i.e.
the set of subsets of X with exactly two elements. In conclusion,O ′(X) cannot exceed
O ′(X∗), where X∗ ⊂ X is the subset that is assigned the highest O ′-coherence and
it is clear from the considerations above that candidates for X∗ can only be sets with
exactly two propositions.

In contrast toO ′, no other probabilistic coherencemeasure presented in the literature
such as Shogenji’s (1999), Fitelson’s (2003), Douven and Meijs’ (2007), Schupbach’s
(2011), Roche’s (2013) or Schippers’ (2014a) behaves like this. Simply consider the
probability model given in Fig. 3 as a counterexample.

Based on some simple calculations one can easily see in Table 3 that according to
the aforementionedmeasures (for their function equations the reader is kindly referred
to the respective literature) each 2-element subset is less coherent than the complete
3-element set under this distribution of probabilities:

It should also be noted that the property affecting O ′ does not depend on the fact
that it uses the straight average over all O values. Quite the contrary, it holds for any
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Fig. 3 Probability distribution
as counterexample
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Table 3 Results for the distribution displayed in Fig. 3

Sets Shogenji Fitelson Douven and Meijs Schupbach Roche Schippers

{x1, x2} 1.25 0.2 0.1 0.096 0.500 0.25

{x1, x3} 1.25 0.2 0.1 0.096 0.500 0.25

{x2, x3} 1.25 0.2 0.1 0.096 0.500 0.25

{x1, x2, x3} 3.125 0.5 0.275 0.295 0.625 0.5

averaging procedure. Accordingly, we introduce a recipe for refined overlap measures
based on some average ofO-values. For each set X let X ′

1, . . . , X
′
m denote the elements

of 2X≥2. Then a weighted average of O values can be defined by means of a weight
vector W = 〈w1, . . . , wm〉 with wi ∈ [0, 1] such that ∑i≤m wi = 1.

OW (X) =
m∑
i=1

wi · O(X ′
i )

This way it can easily be seen that Meijs’ version of the measure is just OW where
wi = 1/m for any wi ∈ W . Now, in order to prove Theorem 2 for each instance
of OW observe that each OW (X ′) for any X ′ ⊆ X is, again, only some average of
O-values. Therefore, the above argument also entails that OW (X ′) cannot exceed the
degree of OW -coherence that is assigned to the maximally coherent two-membered
subset of X for any W . A fortiori, OW cannot exceed the degree of OW -coherence of
its maximally coherent subset.

This result, too, is devastating for the refined overlap measure of coherence. There
seems to be no good reason why the fact described in Theorem 2 should hold for any
set whatsoever. In particular, the raven test case illustrates that it should not hold for
at least some sets. More general, any set {x1 → x2, x1, x2} under some probability
function where each proposition has been provided by independent and equally reli-
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able sources might be considered as a counterexample. Each subset {x1 → x2, x1},
{x1 → x2, x2} and {x1, x2} seems relatively unconnected.4 There is always one final
piece of information missing to make each of the sets coherent. In the final set, how-
ever, all pieces of information fit together neatly. Therefore, it is hard to see why the
value of a probabilistic measure of coherence should be limited by the degrees of
coherence of the possibly unconnected subsets and not allow for a higher degree of
coherence of the final set. Given the results presented above, we conclude that both
kinds of relative overlap measures O and OW , in particular O ′, cannot be adequate
measures of coherence.
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